Determinants of Isoprene SOA Yields from Recent Comprehensive Chamber Studies

Kelvin H. Bates, R. H. Schwantes, T. B. Nguyen, R. C. Flagan, J. H. Seinfeld
Caltech
AAAR, Portland, OR
20 October 2016
Motivation

~535 Tg y\(^{-1}\)

25-50% of annual global secondary organic material production

Guenther et al., 1995, 2012
Henze et al., 2006
Hoyle et al., 2007
Heald et al., 2008
Lin et al., 2012
Motivation

~50% is “low-NO”
Motivation
The Low-NO pathway

Surratt et al., PNAS, 2010
IEPOX SOA

Hu et al., ACPD, 2015
The Low-NO pathway II

LVOC (dihydroxy-dihydroperoxide, carboxyl/epoxyl-tetrol...)

<10%

Krechmer et al., ES&T, 2015
Low-NO Isoprene SOA Yields

• Broad range (0.01 – 0.2)
• Parameterizations focused on IEPOX
• Many contributing factors: LWC/RH, T, H⁺, SO₄²⁻, NH₄⁺, particle area, organic coating...

Carlton et al., ACP, 2009; Gaston et al., ES&T, 2014
Methods

1. Humidify
2. Inject isoprene
3. Inject NO, NO\textsubscript{2}, CH\textsubscript{3}ONO, t-BuOOH
4. Inject seed salt
5. Wait for wall loss & coagulation
6. Irradiate

Environmental Chamber (21 m3)

- uv lights ($\lambda_{\text{max}} = 350$ nm)

Analytical Instruments

- AMS
- DMA
- CIMS
- GC
- RH/T
Experiments

Systematically and comprehensively varying:

- temperature
- particle acidity (atomizing solution → AIOMFAC)
- humidity (→ LWC)
- particle surface area
- [NO] and [NO₂]
- organic coatings
- seed salt composition
Results

Yields are calculated from DMA & GC, and are:

- shown at end of photooxidation (stable)
- corrected for particle wall loss
- corrected for coagulation
- NOT corrected for vapor wall loss

... so consider them tentative
Low-NO: pH, RH, and T

![Graph showing the relationship between pH, RH, and mass yield at different temperatures (17 °C, 25 °C, 32 °C).]
Low-NO: f_{82} and f_{91}
Low-NO: IEPOX-SOA and pH

IEPOX

LVOC

AMS f_{82} vs pH

AMS f_{91} vs pH

Legend:
- 17 °C
- 25 °C
- 32 °C

RH (%)
Low-NO: LVOC-SOA and T

IEPOX

LVOC

AMS f_{82}

AMS f_{91}

temp (C)

16 19 22 25 28 31 34

10 $\times 10^{-3}$

pH

-3 -2 -1 0 1 2 3 4 5

12/18/16 8:48 PM
Low-NO: AMS signatures

IEPOX

LVOC

17 °C
25 °C
32 °C
High-NO: Nitrate Pathway

Diagram showing a chemical pathway involving molecules such as NO, NO$_2$, and HO. The pathway is represented with chemical structures and reactions.

Graph showing the relationship between seed surface area (µm2 cm$^{-3}$) and mass yield at different temperatures (°C). The graph includes data points and a color scale for temperature.
High-NO: MPAN Pathway
Conclusions

Low NO: AMS is useful in differentiating between IEPOX and LVOC pathways, yields from which depend on pH/RH and T respectively.

High NO: \([\text{NO}]/[\text{NO}_2]\) ratio determines relative importance of nitrate (low yield, T dependent) and MPAN (high yield, nucleation) pathways.